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Brazil

(Received 6 October 2004; in final form 26 April 2005; accepted 26 April 2005 )

The exact tilt angle profiles for splay–bend deformations, in nematic liquid crystal samples
limited by inhomogeneous surfaces, are determined in the one-constant approximation. The
boundary value problem concerning the situation of strong anchoring at the surfaces of a
sample of slab shape of thickness d (Dirichlet’s problem) is analytically solved in the presence
of an external uniform field. The boundary value problem concerning the weak anchoring
situation (mixed problem) is also exactly solved in the absence of an external field. The results
are used to obtain the thickness dependence of the optical path difference between the
ordinary and extraordinary rays, from which the physical properties of the sample can be
deduced.

1. Introduction

Nematic liquid crystals (NLCs) are anisotropic fluids

whose physical properties depend on the spatial

distribution of the director field n. This field gives the

local average molecular long axis direction [1]. When

the director n is parallel everywhere to a plane, as in the

case of splay–bend deformation, it may be written in

terms of one angle [2]. The evaluation of the director

field or of, say, the tilt angle is performed in the

framework of the elastic continuum theory [3–6]. In

the absence of external fields, the director n depends on

the surface treatment. According to this treatment it is

possible to characterize surface inhomogeneities influ-

encing the NLC orientation. Alignment of the NLC by

spatially inhomogeneous surfaces has been analysed

following the pioneering work of Berreman [7], who

investigated the anchoring effect of a periodically

undulating surface where the surface anchoring is

locally strong. Since then, the influence of inhomoge-

neous surfaces on the molecular orientation of an NLC

sample has been analysed by several authors in the

framework of Frank–Oseen elasticity [8–16]. Some

years ago, a complete analytical model for the

determination of the profile of the tilt angle was

proposed [15] in the strong and weak anchoring

hypothesis. The analysis was motivated by the necessity

to improve the definition of the surface energy [14] in a

continuum description, and the wish to connect the

anchoring energy experimentally detected with the

random distribution of the easy axes. The same analysis

[15] was extended in order to describe walls of

orientation induced by sharp variations of the surface

treatment [16].

In recent years, the importance of a complete

understanding of the alignment of an NLC with

patterned isotropic surfaces for practical applications

[17] has been recognized. Of particular interest is the

investigation of multiple stable NLC orientations for

the reduction of power consumption in devices [18]. In

these systems, the patterning of a substrate represents a

key aspect for the performance of the devices. In

general, control of the surface treatment is crucial for

the performance of NLC devices and for the under-

standing of the molecular orientation in NLC samples

[19–21].

In this paper, the model proposed in [15] is used to

determine the exact profiles of the tilt angle for splay–

bend geometry in a sample of NLC in the shape of a

slab of thickness d for the cases of strong anchoring

(with and without external field) and weak anchoring

(without external field) at the treated surfaces. We

present, for the first time, the complete analytical

solution for the situation of weak anchoring energy, in

the one-constant approximation, and using the para-

bolic approximation for the surface energy, in the

absence of electric field. We present also the exact

solution of the strong anchoring case in the presence of

a uniform external electric field. These exact solutions

can be directly employed to establish, in closed forms,*Corresponding author. Email: lre@dfi.uem.br
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the thickness dependence of the optical path difference

in real samples.

Our paper is organized as follows. In § 2 the general

mathematical formalism for a slab is presented in the

general weak anchoring situation. In § 3 the profiles of

the tilt angle are explicitly determined for the case of

strong anchoring with and without an external electric

field. This case corresponds to the mathematical

problem known as Dirichlet’s problem and is analyti-

cally solved in terms of propagators. In § 4 the tilt angle

profiles in the situation of weak anchoring (mixed

problem) and in the absence of an external electric field

is exactly solved. In § 5 the general case in which the

anchoring is strong at one of the surfaces and weak at

the other, is exactly solved. In § 6 we discuss in detail an

application of the previous results, for the case of a

periodic distribution of easy axis at the lower surface.

The problem is presented for illustrative purposes, due

to its connection with the original Berreman problem

[7], in order to show how to connect these exact results

with the experimentally relevant quantities, such as, the

optical path difference. The behaviour of the optical

path difference is shown as a function of the ratio

between the thickness of the sample and its extrapola-

tion length. Some concluding remarks stressing the

applicability of the theoretical tools to relevant experi-

mental situations are presented in § 7.

2. Mathematical problem for a slab

Let us consider a nematic slab of thickness d. The

Cartesian reference frame is chosen with the z-axis

normal to the bounding plates, located at z5¡d/2. The

x-axis is parallel to the direction along which the surface

tilt angle is expected to change, and the tilt angle, h,

made by the nematic director with the z-axis, is

supposed y-independent and such that nx5sin h(x, z),

ny50 and nx5cos h(x, z). In the one-constant approx-

imation, K115K225K335K, the bulk free energy density

due to elastic distortions is given by [1]

fb~
1

2
K ~++h
� �2

ð1Þ

where ~++h~i Lh=Lxð Þzk Lh=Lzð Þ, whilst i and k are the

unit vectors parallel to the x-and z-axes, respectively.

The general situation can be analysed by taking into

account the existence of a finite surface energy which we

will assume to be of the kind proposed by Rapini and

Papoular [22], but in the parabolic approximation, i.e.

fs5(W/2)(h2H)2, where W is the anchoring strength.

This approximation implies that we are considering

only deformations for which the difference between the

actual tilt angle at the surface and the easy direction

imposed by the surface is small. The strong anchoring

case corresponds to the limit WR‘. The total elastic

free energy of the nematic sample, per unit length along

the y-axis, is given by

F h x, zð Þ½ �~
ð?

{?
dx

ðd=2

{d=2

dz
1

2
K ~++h
� �2

z

ð?
{?

1

2

W{ h{ xð Þ{H{ xð Þ½ �2

zW{ hz xð Þ{Hz xð Þ½ �2

( )
dx

ð2Þ

where h¡(x) is the actual value of the surface tilt angle,

W2 and W+ refer to the low and upper surface

respectively. Hereafter, for simplicity, we will assume

that W25W+5W. The principle of the continuum

theory states that the actual director profile, or h(x, z),

is deduced by minimizing the total free energy given by

equation (2). Usual calculations give

L2h

Lx2
z

L2h

Lz2
~0, {?vxv?, {

d

2
ƒzƒ

d

2
: ð3Þ

The solution is a harmonic function h(x, z) which needs

to satisfy appropriate boundary conditions. In the

general case of weak anchoring the boundary conditions

are [23]:

+L
Lh

Lz

� �

z~+d=2

zh+ xð Þ{H+ xð Þ~0: ð4Þ

In equation (4), L5K/W is the extrapolation length [8],

and H¡(x) accounts for the surface orientation imposed

by the surface treatment, i.e. the easy axes on the upper

and lower surfaces, respectively. It is possible to show

that the general solution of equation (3), satisfying

boundary conditions (4), can be expressed in terms of

propagators as [15, 16]

hW x, zð Þ~
ð?

{?

Gz x0{x, zð Þhz x0ð Þ
zG{ x0{x, zð Þh{ x0ð Þ

� �
dx0

where

G+ x0{x, zð Þ~ 1

2d

cos pz=dð Þ
cosh p x0{xð Þ=d½ �+sin pz=dð Þ : ð6Þ

By substituting the general solution into the bound-

ary conditions equation (4), one obtains

h+~H++L

ð?
{?

dx0
hz xð Þhz x{x0, zð Þ
zh{ xð Þh{ x{x0, zð Þ

� �

z~+d=2

ð7Þ

where h¡(x2x9, z)5LG¡(x2x9, z)/Lz. Therefore, to

solve the boundary value problem relative to the weak

anchoring situation, one has to solve the set of two

coupled Fredholm integral equations of second kind in

equations (7) in order to obtain the tilt angle at the

(5)
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surfaces h¡. Once a solution is obtained, equation (5)

can be used to give the tilt angle profile. In the next

section we present an alternative way to solve the

problem.

3. Strong anchoring case

3.1. No external field

Let us first consider the simple case of strong anchoring,

which corresponds to the limit LR0. In this case,

equation (4) reduces to

h x, +
d

2

� �
~H+ xð Þ ð8Þ

and the exact solution is simply written as

hS x, zð Þ~
ð?

{?

X
i
Gi x0{x, zð ÞHi x0ð Þdx0 ð9Þ

where i5+, 2. Equations (6) and (9) give the complete

solution of the problem in the strong ancho-

ring hypothesis and has been discussed in detail in [15,

16].

3.2. External uniform electric field

When the NLC is submitted to an electric field, E,

parallel to z, the total energy per unit length along y

may be written as

F h x, zð Þ½ �~
ð?

{?
dx

ðd=2

{d=2

dz
1

2
K ~++h
� �2

z
ea

2
E2h2

� �

z

ð?
{?

1

2

W{ h{ xð Þ{H{ xð Þ½ �2

zW{ hz xð Þ{Hz xð Þ½ �2

( )
dx

ð10Þ

in the limit of small h. In equation (10) ea5e||2eH (|| and

H refer to the direction of n) is the dielectric anisotropy.

By minimizing (10) we obtain

L2h

Lx2
z

L2h

Lz2
~a2h ð11Þ

where a25(ea/K)E2. In order to obtain the solution for

this equation, we start by considering the Fourier

transform of equation (11) on the x variable, which

yields:

{k2h k, zð Þz d2

dz2
h k, zð Þ~a2h k, zð Þ: ð12Þ

By solving the above equation, we obtain in the k-space

the solution

h k, zð Þ~Gz k, zð ÞHz kð ÞzG{ k, zð ÞH{ kð Þ ð13Þ

with

G+ k, zð Þ~
sinh k2za2

� �1
2 d=2+zð Þ

h i

sinh k2za2ð Þ
1
2d

h i : ð14Þ

Now, by using the inverse Fourier transform, and

taking the convolution theorem into account, we

obtain

h x, zð Þ~
ð?

{?

X
i

Gi x{x0, zð ÞHi x0ð Þdx0 ð15Þ

where, as before, i5+, 2 and

G+ x, zð Þ~
X?
n~1

{1ð Þnz1np sin np=d d=2+zð Þ½ �

d npð Þ2z adð Þ2
h i1

2

exp { np=dð Þ2za2
h i1

2

xj j
	 
 ð16Þ

Note that by removing the electric field, E, from the

above equation, i.e. by putting a50, we recover the

result obtained in equation (6) for the strong anchoring

case in the absence of an external field.

4. Weak anchoring situation: mixed problem

To face the mixed boundary - value problem, in the

absence of an external electric field, instead of solving

the system of two coupled integral equations repre-

sented by equation (7), we start again by considering the

Fourier transform of equation (3), which yields:

d2q k, zð Þ
dz2

{k2q k, zð Þ~0 ð17Þ

where

q k, zð Þ~
ð?

{?
dx exp {ikxð Þh x, zð Þ: ð18Þ

A particular solution of equation (17) may be written

as

q k, zð Þ~C1 kð Þexp kzð ÞzC2 kð Þexp {kzð Þ: ð19Þ

In the same manner, by Fourier transforming the

boundary conditions, equation (4), we obtain

+L
dq

dz

� �

z~+d=2

zq+ kð Þ{W+ kð Þ~0, ð20Þ

with q¡(k)5q(k, ¡d/2) and

W+ kð Þ~
ð?

{?
dx exp {ikxð ÞH+ xð Þ: ð21Þ

By substituting equation (19) into (20) one easily
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obtains the system of equations

1zkLð Þekd=2C1 kð Þz 1{kLð Þe{kd=2C2 kð Þ~Wz kð Þ

1{kLð Þe{kd=2C1 kð Þz 1zkLð Þekd=2C2 kð Þ~W{ kð Þ,
ð22Þ

giving

C1 kð Þ~ 1zkLð Þexp kd=2ð ÞWz kð Þ{ 1{kLð Þexp {kd=2ð ÞW{ kð Þ
1zkLð Þ2exp kdð Þ{ 1{kLð Þ2exp {kdð Þ

C2 kð Þ~ 1zkLð Þexp kd=2ð ÞW{ kð Þ{ 1{kLð Þexp {kd=2ð ÞWz kð Þ
1zkLð Þ2exp kdð Þ{ 1{kLð Þ2exp {kdð Þ

:

ð23Þ

To proceed further, we note that, after some manipula-

tions of equations (19) and (23), q(k, z) can be written

as

q k, zð Þ~Gz k, zð ÞWz kð ÞzG{ k, zð ÞW{ kð Þ ð24Þ

where

G+ k, zð Þ~ sinh k d=2+zð Þ½ �zkL cosh k d=2+zð Þ½ �
1z kLð Þ2
h i

sinh kdð Þz2kL cosh kdð Þ
: ð25Þ

In this way, the problem is formally solved in the k-

space. To obtain h(x, z), we have to consider the inverse

Fourier transform of equation (25) and the convolution

theorem, namely

h x, zð Þ~F{1 Gz k, zð ÞWz kð Þf gzF{1 G{ k, zð ÞW{ kð Þf g

~

ð?
{?

dx0
X

i

Gi x{x0, zð ÞHi x0ð Þ
ð26Þ

with i52, + and

G+ x, zð Þ~
ð?

{?

dk

2p
exp ikxð ÞG+ k, zð Þ: ð27Þ

Explicit formulae for the new propagator can be

obtained by performing the above integration with the

help of the method of residues [24]. One obtains

G+ x, zð Þ~
X?

n~1

sin kn d=2+zð Þ½ �
zknL cos kn d=2+zð Þ½ �

2knL Lzdð Þsin kndð Þ
{ 1{ knLð Þ2
� �

dz2L
h i

cos kndð Þ
exp {kn xj jð Þ

ð28Þ

with kn.0. The values of kn are obtained from equation

2knL cos (knd)+[12(knL)2] sin (knd)50. Equation (28) is

an extension from (6) by considering an extrapolation

length and it also recovers equation (6) for LR0.

5. Combined situations of weak and strong anchoring

Let us consider now the case in which at one of the

surfaces the situation is of strong anchoring, and at the

other the anchoring is weak. Specifically, consider that

h x,
d

2

� �
~Hz xð Þ

{L
Lh

Lz

� �

z~{d=2

zh{ xð Þ{H{ xð Þ~0:

ð29Þ

By using the Fourier transform, we can reduce

equation (3) to

{k2h k, zð Þz d2

dz2
h k, zð Þ~0: ð30Þ

The solution for the above equation in the k-space is

h k, zð Þ~C01 kð Þexp kzð ÞzC02 kð Þexp {kzð Þ ð31Þ

Now applying the boundary conditions, we obtain

exp kd=2ð ÞC01 kð Þzexp {kd=2ð ÞC02 kð Þ~Hz kð Þ

1{kLð Þexp {kd=2ð ÞC01 kð Þ

z 1zkLð Þexp kd=2ð ÞC02 kð Þ~H{ kð Þ:

ð32Þ

From the above set of equations we easily obtain C01 kð Þ
and C02 kð Þ. Therefore, equation (31) can be rewritten as

h k, zð Þ~G0z k, zð ÞHz kð ÞzG0{ k, zð ÞH{ kð Þ ð33Þ

which, by using the inverse of Fourier transform is

reduced to

h x, zð Þ~
ð?

{?
dx0

X
i

G0i x{x0, zð ÞHi x0ð Þ ð34Þ

where, again, i52, + and

Gz x, zð Þ~
X?

n~1

sin kn d=2zzð Þ
� �

zknL cos kn d=2zzð Þ
� �

knLd sin knd
� �

{ dzLð Þcos knd
� � exp {kn xj j

� �

G{ x, zð Þ~
X?

n~1

sin kn d=2{zð Þ
� �

knLd sin knd
� �

{ dzLð Þcos knd
� � exp {kn xj j

� �
ð35Þ

with kn > 0. The values of kn are obtained from the

equation knL cos knd
� �

zsin knd
� �

~0.

6. Illustrative examples

In order to explore the generality of the solution

represented by equation (9), we first consider, for

illustrative purposes, a problem dealing with a periodic

distribution of easy axes [14]. We consider a sample in

the shape of a slab as in figure 1, such that

Hz xð Þ~H0, and H{ xð Þ~
H1, 0vxva

H2, avxv2a

	
ð36Þ

indicating that the easy axes at the lower surface is

distributed with a periodicity l52a. In general terms,

(23)

(35)
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the boundary conditions may be rewritten as

Hz xð Þ~H0 and

H{ xð Þ~H1z H2{H1ð Þ
X?

n~0

{1ð Þn H x{nað ÞzH {x{ nz1ð Það Þ½ �
ð37Þ

where H(x) is the Heaviside step function.

6.1. Strong anchoring case

In the strong anchoring situation we have to solve the

Dirichlet problem, i.e. to find a solution for equation (3)

satisfying boundary conditions (8), when H¡ is

distributed according to equation (37). In this case the

general solution of the problem may be written as

h x, zð Þ~H0DzzH1D{

z H2{H1ð Þ
X?
n~0

{1ð Þn arctan
cos pz

2d

� �
{sin pz

2d

� �

cos pz
2d

� �
zsin pz

2d

� � tanh
p

2d
x{nað Þ

h i" #(

{ arctan
cos pz

2d

� �
{sin pz

2d

� �

cos pz
2d

� �
zsin pz

2d

� � tanh
p

2d
xz 1znð Það Þ

h i" #
z2D{

)
ð38Þ

where, to save space, we have introduced the quantities:

D+~
2

p
arctan

cos pz
2d

� �
+sin pz

2d

� �

cos pz
2d

� �
+sin pz

2d

� �
" #

: ð39Þ

6.2. Weak anchoring case

In the weak anchoring situation, we again have to solve

equation (3), but now subjected to the boundary

conditions (4), when the easy axes are given by

equation (37). After some algebra, a closed solution is

obtained, namely

h x, zð Þ~2H0

X?
n~1

fz kn, zð Þ
kn

z2H1

X?
n~1

f{ kn, zð Þ
kn

z H2{H1ð Þ

|
X?
n~1

f{ kn, zð Þ
kn

X?
m~0

{1ð Þm 2{exp {kn x{mað Þ½ �½ �H x{mað Þf

z exp {kn ma{xð Þ½ �H ma{xð Þzexp {kn xz mz1ð Það Þ½ �H xz mz1ð Það Þ

z 2{exp kn xz mz1ð Það Þ½ �½ �H {x{ mz1ð Það Þg

ð40Þ

where

f+ kn, zð Þ~ sin kn d=2+zð Þ½ �zknL cos kn d=2+zð Þ½ �
2knL Lzdð Þsin kndð Þ{ 1{ knLð Þ2

� �
dz2L

h i
cos kndð Þ

: ð41Þ

As a final illustration, we can consider the following

distribution of easy axis

Hz xð Þ~H0, and H{ xð Þ~H1 sin qxð Þ ð42Þ

in which q52p/l, where l is connected with the spatial

periodicity of the sinusoidal distribution of the easy

axis. The general case refers to the weak anchoring

situation, i.e. the problem is solved for the boundary

conditions (4). One easily obtains for the profile of the

tilt angle:

h x, zð Þ~2H0

X?

n~1

fz kn, zð Þ
kn

z2H1

X?

n~1

f{ kn, zð Þ
q2zk2

n

kn sin qxð Þ ð43Þ

with f¡(kn, z) given by equation (41). The above

solutions show that a very large class of problems

may be exactly solved with the formalism we have

presented.

When h(x, z) is known, the physical properties of the

NLC sample can be explored. For example, in the case

in which a linear polarized beam impinges normally on

the nematic sample, the optical path difference Dl [25],

between the ordinary and the extraordinary ray is

(38)

(40)

(41)

Figure 1. Nematic sample of thickness d whose upper
surface, located at z5d/2, is characterized by a uniform
orientation H0, whereas the lower surface is characterized by a
periodic distribution of easy axes, such that l52a (b5a).

Figure 2. Optical path difference noRDl/L vs reduced thick-
ness d/2L, for l5L, L/2L55, H05p/4, and H15p/2.

(43)
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given by

Dl~
1

L

ðL=2

{L=2

ðd=2

{d=2

Dn hð Þdx dz~
1

2
noRdSh2T ð44Þ

where

Sh2T~
1

dL

ðL=2

{L=2

ðd=2

{d=2

h x, zð Þ2dx dz ð45Þ

Figure 3. Tilt angle profile h(x, z) vs reduced coordinates 2z/d and x/L for l5L (upper) and l5100L (lower). Both surfaces are
characterized by weak anchoring and the curves have been depicted for d/2L510, L/2L5100, and H05H15p/2.
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is the average square tilt angle, evaluated over a typical

length L, connected with the diameter of the light beam.

Furthermore, R512(no/ne)
2, and no and ne are,

respectively, the ordinary and extraordinary refractive

indices. In figure 2 the optical path difference is shown

as a function of the reduced thickness d/2L for a

nematic medium whose distribution of easy axes at the
surfaces is given by equation (42). Due to the different

easy axes on both surfaces, the sample is distorted for

any finite thickness, i.e. Dl?0 for every d. As expected,

DlR0 when dR0. The distortions are illustrated in

figure 3 for two different values of l52p/q. In the upper

part of figure 3, l5L and the distortions in the director

profile are strongly localized near the lower surface, at

2z/d521, for which the easy axis distribution is
periodic. The tilt angle profile is practically uniform

for the rest of the sample. In the lower part of figure 3,

h(x, z) is shown for l5100L. In this case, the entire

sample is distorted. Near the upper surface the

orientation tends to become more uniform: h tends to

a constant value less than H05p/2, because the

anchoring is weak at that surface. Note that we are

working in the approximation for which the difference
between the actual tilt angle and the angle characteriz-

ing the easy direction is small. Therefore, we only

require the relative difference between h and H0 (or H1)

to be small, which is the case illustrated in figure 3.

7. Concluding remarks

Exact tilt angle profiles have been determined for a

nematic liquid crystal sample of thickness d, when only

splay–bend deformations are allowed in the system.

Different situations of surface inhomogeneities have

been considered in the case of strong and weak
anchoring at the surfaces, in the one-constant approx-

imation. Boundary-value problems connected with the

Laplace equation in two dimensions (representing the

situation of the absence of an external field) have been

solved in closed analytical form. The tilt angle profile

for the case of weak anchoring, representing the mixed

boundary-value problem, has been exactly obtained for

a large class of representative distributions of the easy
axes at the surfaces. The Dirichlet’s problem (strong

anchoring case) was solved for a sample submitted to an

external uniform electric field. The general results have

been applied to a few illustrative cases. In particular, the

case in which at one of the surfaces the easy axis

distribution is periodic, whereas at the other it is

uniform (in the case of weak anchoring) is discussed.

For this representative case, the optical path difference
was calculated as a function of the reduced thickness of

the sample (d/2L), indicating that the molecular

orientation is never uniform, even for arbitrary values

of thickness. The tilt angle profiles are shown to be

strongly dependent of the value of the spatial periodicity

l of the distribution of the easy axis. For small values of

l(l<L) the deformations are localized near the surface,

whereas for l.L, the distortions extend over the entire

sample.
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